FIITJEE Solutions to NTSE-I (2015) (For Class X Students) (MAT)

Time: 45 Minutes

Max Marks: 50

INSTRUCTIONS TO CANDIDATES

Read the following instructions carefully before you open the Question Booklet.

- 1. Use blue/black ball point pen only.
- 2. Write your Roll No. very clearly (only one digit in on block) on this booklet and on the **ANSWER SHEET**.
- 3. This test consists of 50 questions of one mark each. All the questions are **COMPULSORY.**
- 4. Answer to each question by filling the correct alternative among the four choices on the answer sheet.

Example:

	Q.No.	Alternatives
Correct way:	1	
	Q.No.	Alternatives
Wrong way:	1	⊗ ⊇ 3 0

5. Separate sheet has been provided for rough work in this test booklet.

NTSE STAGE I (MAT) HINTS & SOLUTIONS

1. 2 Sol. $p^2 + q^2 = 2pq$ $p^2 + q^2 - 2pq = 0$ $(p-q)^2 = 0$ p = q $\begin{pmatrix} p \\ q \end{pmatrix}^{23} \begin{pmatrix} q \\ - \\ q \end{pmatrix}^{7}$ $\begin{pmatrix} q \\ - \\ q \end{pmatrix}$ =1+1=2 2. 4 Sol. Let distance be d. $\therefore 4^{d} - 5^{d} = \frac{36}{60}$ $20^{d} = {}^{36}60$ d = 12 km \therefore Actual time to reach on time = ${}^{12}_{4-1=2 \text{ hrs}}$ ∴ Required speed = 6 km/hr 3. 2 3A=4B, 2C=3B Sol. $B^{A}=3^{4}=8^{6}, C^{B}=3^{2}=9^{6}$:: A:B:C=8:6:9 4. 2 hcf (6,4,2) lcm (5,15,5) = 2/15 5. 3 $\frac{10}{100}$ (7290 = x | 1 -Sol. $7290 = x_1 \frac{9}{10}^3$ $\frac{7290 \times 1000}{729} = x$ x = Rs 10000 6. 4 1 Sol. $\sqrt{2} + \sqrt{3} - \sqrt{5}^{+} \sqrt{2} - \sqrt{2} - \sqrt{3} - 5$ √2-3√5+2∜3-5√ √ √ √ √ √ √ $\frac{\sqrt{}}{}$)(2-5-3) 2-5+3

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})}{(\sqrt[3]{2} - \sqrt{5})^2 - (\sqrt[3]{3})^2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} - \sqrt{5})^7 - 2}{(\sqrt[3]{2} - \sqrt{5})^7 - 2} - \frac{1}{2}$$

$$= \frac{2(\sqrt[3]{2} -$$

 $\therefore 3^{x-y} = 3^{1/2} = \sqrt{3}$

8.

1

7.

Sol. Speed of A = a m/s Speed of B = b m/s 100_a $\therefore \frac{100}{b} - \frac{100}{a} = 5 \text{ and } \frac{80}{b} = 100$ = b^a = ⁵4 \Rightarrow b = ^{4a}5

 $100_{4a} - 100_{a} = 5$

5 Solving, we get a = 5 m/s

9.

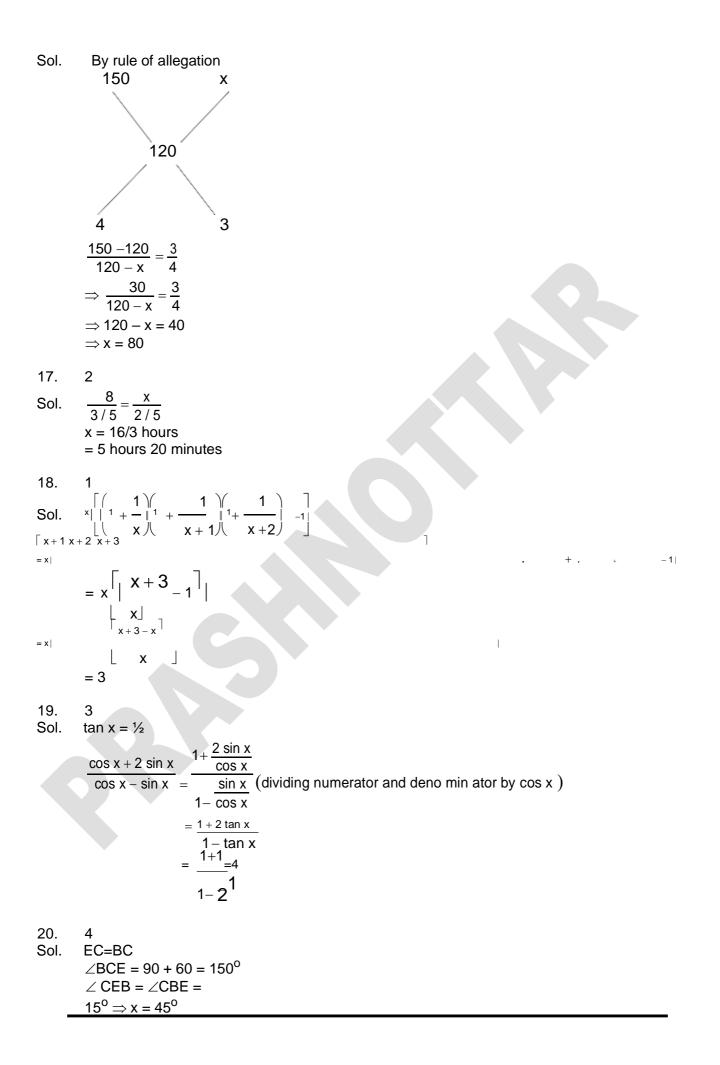
3

11 11 11 11...∞ = x Sol. $x^{2} = 11x$ $x^{2} - 11x = 0$ x(x-11) = 0 $x \neq 0$, $\Rightarrow x = 11$

3

- Since there are only odd multiples of 5, unit digit in the product will be 5. Sol.
- 11. 1
- Final change = reduction by Sol.

 $\begin{bmatrix} 12^2 \\ 100 \end{bmatrix}$


= reduction by 1.44%

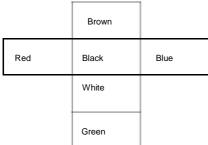
^{10.}

12. 2 Sol. Let the remainder be ax + b $f(1) \Rightarrow 2 = a + b$ $f(-1) \Rightarrow 0 = -a + b$ \Rightarrow 2b = 2 b = 1, a = 1 \therefore Remainder = x + 1 13. 3 $\frac{x+7}{2x} = \frac{2x+10}{3x} \{ \text{basic proportionality theorem} \}$ Sol. \Rightarrow 3x + 21 = 4x + 20 \Rightarrow x = 1 14. Sol. 2 13% (77 – x)% x% (66 – x)% English Math 13 + 77 - x + x + 66 - x = 100156 - x = 100x = 56 :. 56% of total = 784 $_{784 \times 100}$ = 784 Total = = 1400 15. 2 $\frac{160}{2 \times 7} + \frac{160}{7 \times 12} + \frac{160}{12 \times 17} + \dots$ 160 Sol. 27×32 $= 32 \left[\frac{5}{2 \times 7} + \frac{5}{7 \times 12} + \dots + \right]$ 5 27 × 32 $= 32 \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \frac{1}{7} + \frac{1}{7} - \frac{1}{12}$ $+...+\frac{1}{27}-\frac{1}{32}$ = 32 1_1 2 32 _{16 -1} =32 = 15

32 🔄

16. 1

21. 2 $(3.75)^2 + (1.25)^2 - 2 \times (3.75)(1.25)$ Sol. $(3.75)^2 - (1.25)^2$ $=\frac{3.75 - 1.25}{_{\Gamma}3.75 + 1.25} = \frac{2.5}{_{5_{T}}} = \frac{1}{_{2}} = 0.5$ <u>(a</u>-b) $= \frac{a - b}{a + b}$ 22. 1 Sol. Let my present age be x Difference of ages = 31 - 8 = 23 \therefore father = x + 23 x + 23 = 2 xx = 23 23. 2 Number of digits used = $1 \times 9 + 2 \times 90 + 3 \times 101 = 492$ Sol.) () (() 3 24. $x + \frac{1}{2} = 2N$ Sol. Х $x^{2} + \overline{x^{2}} + 2 = 4N^{2}$ $x^{2} + \overline{x^{2}} = 4N^{2} - 2$:. mean of x^2 and $x_2^1 = 2^1 (4N^2 - 2) = 2N^2 - 1$ 25. 3 100^{1/6},12^{1/3},3^{1/2} Sol. \Rightarrow (100)^{1/6}, (12²)^{1/6}, (3³)^{1/6} $\Rightarrow 100^{1/6}, 144^{1/6}, 27^{1/6}$: greatest = $12^{1/3} = \frac{3}{12}$ 26. 2 Sol. Ľ RIGET G Е R Т NROWC С R 0 W Ν


27. 1

- Sol. The pattern is +2, +1, -1, +2, -2 respectively of letters as in the English Alphabet.
- 28. 1
- Sol. 3 times ______ 2973173771331738571377173906
- 29. 1
- Sol. 25^{th} December 2008 \rightarrow Thursday 1st January 2009 \rightarrow Thursday 1st January 2010 \rightarrow Friday
- 30.

3

Sol. The net of the cube that is formed is like

... Brown is opposite white.

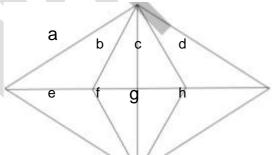
31. 1

```
⇒ opposite to 3 \rightarrow 6
adjacent to 4 \rightarrow 3, 6, 5, 2
⇒ opposite to 4 \rightarrow 1
⇒ opposite to 5 \rightarrow 2
```

32.

3

2


Sol. 2 is opposite to 5 So, sum of the two numbers is 7.

33. 1

 \Rightarrow R is daughter of Q

34.

The triangles are: a, b, c, d, e, f, g, h, ab, bc, cd, ef, fg, gh, bf, cg, abc, bcd, efg, fgh, abcd, efgh, abef, cdgh

44. Sol.	2 $11^2 - 9^2 = 40$ Similarly, answer = $25^2 - 21^2$ = 184	
45. Sol.	3 7 x 8 = 56 15 x 4 = 60 7 x 4 = 28 \Rightarrow missing number = 8 x 15 = 120	
46. Sol.	2 1 x 3, 3 x 5, 5 x 7, <u>7 x 9,</u> 9 x 11, 11 x 13	
47. Sol.	4 In all other figures, the two inner elements are identical but rotated.	
48. Sol.	1 In all except 301, difference of first two digits is the third digit.	
49. Sol.	4 The pattern is $a + b = \sqrt{a} + \sqrt{b}$ ∴ Answer = 16 + 27 = 43	
50.	4 $\Rightarrow 40 \div 8 \times 10 - 12 + 16$ = 54	